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Software failure
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Software failure
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1996 2018

Ariane 5 explosion
$370 million

50% of American 
personal record

Recalls More than 
150,000 vehicles

…
2021~2022
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The cost of 
poor software 
quality in the 

US (2020)

$2.08 
trillion

$2.08 trillion



Software failure

6

$2.08 trillion

$1.89
trillion

Italy GDP 
(2020)

$2.63
trillion

France GDP 
(2020)

$2.08 
trillion

The cost of 
poor software 
quality in the 

US (2020)



Software failure
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2002

$2.08
trillion

$20.9
trillion

2020

$1.95
trillion

$20.4
trillion

$10.9
trillion

$18.7
trillion

$0.06 
trillion

2016 2018

$1.1 
trillion

0.5 % 

5.9 % 
9.5 % 

9.95 % 

The cost of poor 
software quaility

GDP



Software failure
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$1.56 
trillion

$0.52 
trillion

$1.56 trillion

Poor quality 
in legacy 
systems

Operational 
SW failiures

$2.08 trillion

The cost of 
poor software 
quality in the 

US (2020)



Reduce operational software failures
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Specification of underlay

Our software

Specification of 
our software

Applications of 
our software

HW & underlying 
software
(underlay)

Our software faithfully implements the 
specification based on underlying HW 
and software specifications



Replace poor legacy software
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Specification of underlay

Our software
(New version)

Specification of our 
software (New version)

Applications of 
our software

HW & underlying 
software
(underlay)

Our software (new version) faithfully 
implements the specification (new
version) based on underlying HW an
d software specifications

Specification of our 
software (New version)

Specification of our 
software (old version)⊇



Tools for software assurance
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Can those tools entirely tackle previous two challenges? 

èNO!

Expressiveness level Assurance level Cost level

Code review Very high Very low Medium

Testing Medium Low Medium

Type checker 
(Java, Haskell, Rust) Low High low

Static alaysis
(Coverity, Infer) Medium Medium low



Tools for software assurance
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Expressiveness level Assurance level Cost level

Code review Very high Very low Medium

Testing Medium Low Medium

Type checker 
(Java, Haskell, Rust) Low High low

Static alaysis
(Coverity, Infer) Medium Medium low

Formal verificaiton 
(Z3, Adga, Coq) Medium ~ High High ~ Very high Medium ~ Very high

How can we effectively 
use high expressiveness?

How can we avoid 
very high cost?



Tools for software assurance

What do we need to know for formal verification? 
• It is built on top of lots of unerlying theories
• But, verification engineers can only focus on the tiny subset
that is actually required for the verfication target

17

Simulation
Hoare logic

Formal semantics

Proof theory Game semantics 

Categ
ory t

heory

Set theory



Can it actually remove bugs?
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Abstract

Recent advances in formal verification techniques enabled
the implementation of distributed systems with machine-
checked proofs. While results are encouraging, the impor-
tance of distributed systems warrants a large scale evaluation
of the results and verification practices.

This paper thoroughly analyzes three state-of-the-art, for-
mally verified implementations of distributed systems: Iron-
Fleet, Verdi, and Chapar. Through code review and testing,
we found a total of 16 bugs, many of which produce serious
consequences, including crashing servers, returning incor-
rect results to clients, and invalidating verification guaran-
tees. These bugs were caused by violations of a wide-range
of assumptions on which the verified components relied. Our
results revealed that these assumptions referred to a small
fraction of the trusted computing base, mostly at the inter-
face of verified and unverified components. Based on our
observations, we have built a testing toolkit called PK, which
focuses on testing these parts and is able to automate the de-
tection of 13 (out of 16) bugs.

1. Introduction

Distributed systems, complex and difficult to implement cor-
rectly, are notably prone to bugs. This is partially because
developers find it challenging to reason about the combina-
tion of concurrency and failure scenarios. As a result, dis-
tributed systems bugs pose a serious problem for both ser-
vice providers and end users, and have critically caused ser-
vice interruptions and data losses [58]. The struggle to im-
prove their reliability spawned several important lines of re-
search, such as programming abstractions [5, 38, 46], bug-
finding tools [27, 39, 55, 56], and formal verification tech-
niques [23, 30, 36, 54].
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Verified distributed 
system code

OS

Verifier (core)

Developer

Specification

Aux. tools

Shim layer

Figure 1: An overview of the workflow to verify a distributed
system implementation.

Formal verification, in particular, offers an appealing ap-
proach because it provides a strong correctness guarantee
of the absence of bugs under certain assumptions. Over the
last few decades, the dramatic advances in formal verifica-
tion techniques have allowed these techniques to scale to
complex systems. They were successfully applied to build
large single-node implementations, such as the seL4 OS ker-
nel [28] and the CompCert compiler [35]. More recently,
they enabled the verification of complex implementations of
distributed protocols, including IronFleet [23], Verdi [54],
and Chapar [36], which are known to be non-trivial to im-
plement correctly.

At a high level, verifying these distributed system imple-
mentations follows the workflow shown in Figure 1. First,
developers describe the desired behavior of the system in a
high-level specification, which is often manually reviewed
and trusted to be correct. Developers also need to model
the primitives, such as system calls provided by the OS, on
which the implementation relies upon; we refer to this as the
shim layer. Finally, developers invoke auxiliary tools (e.g.,
scripts) to communicate with a verifier and print results. The
specification, the shim layer, and auxiliary tools, as well as
the components they glue together, are part of the trusted
computing base (TCB). If the verification check passes, it
guarantees the correctness of the implementation, assuming
the TCB is correct.



Can it actually remove bugs?
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Formal verification can 
guarantee the correctness of 
target software module

Invariants provides correctness 
property, but it might have 
bugs that are not described in 
invariants

Assumptions about unverified 
components, so it may have 
bugs 

Specification of underlay

Our software

Specification of 
our software

Applications of 
our software

HW & underlying 
software
(underlay)



Formal verification intro
with examples
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Formal verification
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The act of proving the correctness of software with respect 
to a certain formal specification using mathematics

Definition



Proof 
checker

Proof

Yes/No

Program

Specification

Refinement 
relation

• Mathematical notations for
• Program specifications
• Invariants of the system
• Underlying system models

(e.g., HW, Compiler, etc)

• Subject of formal verificaiton

• Proofs for
• Program meet specifications
• Specficiations are consistent (i.e., 

all Invariants are well-defined)

Key components

9

• Consists of 
• Core proof kernel (underlying 

logic)
• Extended libraries for better 

expressiveness



Verification tutorial: 
simple stateless function

• Mathematical (functional) 
specs: 

Definition range_sum (start end : nat)
: nat := 

… 
(end * (end – 1) 
– start * (start – 1)) / 2

end.

Program example: 

int range_sum (int start, int end) {
int sum = 0;

… 
for (int i = start; i <= end; i++) {

sum += i;
}
return sum;

}    

23

“given two positive numbers, find sum of all numbers between two”



Verification tutorial: 
simple stateless function

24

…

Mathematical (functional) specifications

Low-level Implementation

All possible inputs (start, end) Generate same output (sum)



Verification tutorial: abstract state

25

Mathmatical (functional) list: 
Variable A : Type.

Inductive list : Type :=
| nil : list
| cons : A -> list -> list.

Program example: 

1) With array

int array_list[kMaxLength];

1) With linked list

struct Node { 
int data;
Node* next; 
Node* prev;

};

Software usually facilitates hardware states, memory and registers.

Mathematical state could be much simplier than those physical states.

Refinement relation (R): how mathematical list is related to the low-level structure.



Verification tutorial: abstract state
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…

Mathematical (functional) specifications

Low-level Implementation

(abs’, ret)(abs, args)

𝑅 𝑅

((mem, reg), args) ((mem’, reg’), ret)



Decompose the entire software into multiple sub components, 
verifying them, and combine their proofs together.

Verification tutorial: modularity

10

C code C code C code C code

Low-level 
spec

Low-level 
spec

Low-level
spec

High-level
spec

High-level
spec

Low-level
spec

High-level spec
High-level

spec

Specification of our software

...

...

...
Low-level

spec

New abstractions by
compose multiple 
modules

Abstracted model by 
hiding HW and C details

C friendly spec for
easy correctness proof

+
C correctness proof

TCB (HW & 
underlying SW) 
abstraction

Specification of underlay



Verification tutorial: modularity
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…

Mathematical (functional) specifications

Low-level Implementation

((memh’, absh’, regh’), args)((memh, absh, regh), args)

𝑅 𝑅

((meml, absl, regl), args) ((meml’, absl’, regl’), args)

• Contextual refinement
• Compositional approach to compositional verification of concurrent objects.
• Combined with several program logics, it can show consistency between the object 

implementation and its abstract specification.



Verification tutorial: modularity
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How can we effectively
use high expressiveness?

Verification tutorial: modularity
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How can we reduce the 
very high cost?

How can we effectively
use high expressiveness?

Verification tutorial: modularity

10
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Formal verification projects
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My formal verification researches

• CertiKOS – Small OS and hypervisor
• CertiKOS: An Extensible Architecture for Building Certified Concurrent OS 

Kernels. OSDI 2016
• Safety and Liveness of MCS Lock - Layer by Layer. APLAS 2017
• Certified concurrent abstraction layers. PLDI 2018
• Building certified concurrent OS kernels. Comm. of ACM 62(10) 2019

• ADO (Atomic Distributed Object) – Distributed system
• WormSpace: A Modular Foundation for Simple, Verifiable Distributed Systems. 

SoCC 2019
• Much ADO about failures: a fault-aware model for compositional verification 

of strongly consistent distributed systems. Proc. ACM Program. Lang. 5(OOPSLA)
• Adore: Atomic Distributed Objects with Certified Reconfiguration, PLDI 2022

• pKVM formal verificaiton – Practical hypervisor

11



Distributed system verification

Distributed system

16

Local OS 1 Local OS 2 Local OS 3 Local OS 4

Distributed system layer (middleware)

App. B.App. A. App. C. App. D.

Computer 1 Computer 2 Computer 3 Computer 4

network 



SMR
(High-level API)

Distributed
protocols 

(Low-level API)

Distributed services 
(e.g, KV store).

Distributed system
software stack

Distributed system software stack

17



Network-based models too complex 

36
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Network-based models too complex 
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Network-based models too complex 
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Network-based models too complex 
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{
“abc”:”def”
“foo”:”bar”
}

time = 2
leader = true

{
“abc”:”def”
}

time = 1
leader = false

{
“abc”:”def”
“foo”:”bar”
}

time = 2
leader = false

prepare

ack

commitS
1

S
3

S
2

Challenges

Network errors

Protocol subtleties

Application 
(distributed service) 

bugs



Network-based models too complex 

17

Distributed 
protocols 

(Low-level API)

• Non-determinism
• Complex interleaving
• Network & node errors

• Several protocols and implementations 
(paxos, raft, chain-replication, etc)

• Lots of verificaiton works done

SMR
(High-level API)

Distributed services 
(e.g, KV store).

Distributed system
software stack



State machine replication too abstract
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”foo”:”bar”

RPC

SMR

“abc”:“def” “foo”: “bar”

Internal (hidden)



SMR
(High-level API)

Distributed
protocols 

(Low-level API)

Distributed services 
(e.g, KV store).

Distributed system
software stack

• Deterministic

• Unified abstraction  

• Non-determinism
• Complex interleaving
• Network & node errors

• Several protocols and implementations 
(paxos, raft, chain-replication, etc)

• Lots of verificaiton works done

State machine replication too abstract

17



Partial failure
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Partial failure
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{
“abc”:”def”
“foo”:”bar”
}

S1

{
“abc”:”def”
}

S2

{
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}

S3

”foo”:”bar”

Alice



Partial failure
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{
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“foo”:”bar”
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{
“abc”:”def”
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{
“abc”:”def”
}

S3

Read

Bob



Partial failure
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{
“abc”:”def”
“foo”:”bar”
}

S1

{
“abc”:”def”
“foo”:”bar”
}

S2

{
“abc”:”def”
“foo”:”bar”
}

S3

”foo”:”bar”

Bob



Partial failure is important

• Unavoidable feature unique to distributed systems
• Influence with all aspects of distributed protocols (e.g., leader 
election and reconfiguration)
• Can be used for performance optimizations

• TAPIR (SOSP ’15): Transactions with out-of-order commits
• Speculator (SOSP ’05): Speculative distributed file system

47

Partial failure is a central reality of distributed computing. [. . . ] Being robust in 
the face of partial failure requires some expression at the interface level.
(Jim Waldo. A Note on Distributed Computing. 1994) 



Partial failure is important

17

SMR
(High-level API)

Distributed
protocols 

(Low-level API)

Distributed services 
(e.g, KV store).

Distributed system
software stack

• Deterministic

• Unified abstraction  

?
• Non-determinism
• Complex interleaving
• Network & node errors

• Several protocols and implementations 
(paxos, raft, chain-replication, etc)

• Lots of verificaiton works done



ADO (Atomic distributed object)
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SMR
(High-level API)

Distributed
protocols 

(Low-level API)

Distributed services 
(e.g, KV store).

Distributed system
software stack

• Deterministic

• Unified abstraction  
§ Simple, but non-deterministic 

abstraction

§ Covers all protocols 

§ Make connection between two 
APIs possible

• Non-determinism
• Complex interleaving
• Network & node errors

• Several protocols and implementations 
(paxos, raft, chain-replication, etc)

• Lots of verificaiton works done

ADO
(Atomic distributed 

object)



ADO state
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Method
Timestamp

ADO Legend

Persistent Log
Entry
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“abc”:“def”
1

“foo”:“bar”
2

Method
Timestamp

ADO Legend

Persistent Log
Entry

Cache Tree
Entry

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Method
Timestamp



ADO operations
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“foo”:“bar”
2

Pull Invoke Push

Prepare
Local 

Update Commit

Refine
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“xyz”:“123”
4



ADO operations
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ADO operations
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ADO operations

55

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

5

5

5

S1

S3

S2

Prepare
“abc”:“def”

1
“foo”: “bar”

2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“dot”:“cot”
3

“cat”:“dog”
3



ADO operations

56

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

5

5

5

S1

S3

S2

Ack

Ack

“xyz”:“123”
4

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“dot”:“cot”
3

“cat”:“dog”
3



ADO operations
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“bee”:“gee”
5

ADO Operations
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Move committed methods into the log and prune stale states from the tree. 
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ADO Model
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Primary
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Pull Invoke Push

Prepare Local
Update

Commit

Refine

Send
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Recv
(prepare)

…
(prepare)

Send
(commit)
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(commit)

…
(commit)

Local
Update

Send
(prepare)

…
(prepare)

Send
(commit)

…
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(commit)
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ADO ADO ADO ADO
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DApp

ADO
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Conclusion

• Formal verification can reduce the cost for the poor software
• Operational software failure cost
• Cost due to poor legacy systems

• Formal verification
• What is formal verification
• Formal verification key concept
• Modularity in formal verification

• ADO: formal verification project example
• Distributed system formal verification
• Unified and modular program abstractions for distributed systems
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