
© 2023 Jieung Kim, All rights reserved

Introduction to
formal verification

TechTalk @ Google
2022-08-11

Jieung Kim

Contents

2

Contents

• Intro - Do we need formal verification?
• Formal verification intro with examples
• Formal verification project example
• Conclusion

3

Intro –
Do we need
formal verification?

4

Software in the world

5

Software failure

3

Software failure

4

1996 2018

Ariane 5 explosion
$370 million

50% of American
personal record

Recalls More than
150,000 vehicles

…
2021~2022

Software failure

5

Software failure

6

The cost of
poor software
quality in the

US (2020)

$2.08
trillion

$2.08 trillion

Software failure

6

$2.08 trillion

$1.89
trillion

Italy GDP
(2020)

$2.63
trillion

France GDP
(2020)

$2.08
trillion

The cost of
poor software
quality in the

US (2020)

Software failure

6

2002

$2.08
trillion

$20.9
trillion

2020

$1.95
trillion

$20.4
trillion

$10.9
trillion

$18.7
trillion

$0.06
trillion

2016 2018

$1.1
trillion

0.5 %

5.9 %
9.5 %

9.95 %

The cost of poor
software quaility

GDP

Software failure

6

$1.56
trillion

$0.52
trillion

$1.56 trillion

Poor quality
in legacy
systems

Operational
SW failiures

$2.08 trillion

The cost of
poor software
quality in the

US (2020)

Reduce operational software failures

6

Specification of underlay

Our software

Specification of
our software

Applications of
our software

HW & underlying
software
(underlay)

Our software faithfully implements the
specification based on underlying HW
and software specifications

Replace poor legacy software

6

Specification of underlay

Our software
(New version)

Specification of our
software (New version)

Applications of
our software

HW & underlying
software
(underlay)

Our software (new version) faithfully
implements the specification (new
version) based on underlying HW an
d software specifications

Specification of our
software (New version)

Specification of our
software (old version)⊇

Tools for software assurance

7

Can those tools entirely tackle previous two challenges?

èNO!

Expressiveness level Assurance level Cost level

Code review Very high Very low Medium

Testing Medium Low Medium

Type checker
(Java, Haskell, Rust) Low High low

Static alaysis
(Coverity, Infer) Medium Medium low

Tools for software assurance

7

p
ra

ct
ic

al

Expressiveness level Assurance level Cost level

Code review Very high Very low Medium

Testing Medium Low Medium

Type checker
(Java, Haskell, Rust) Low High low

Static alaysis
(Coverity, Infer) Medium Medium low

Formal verificaiton
(Z3, Adga, Coq) Medium ~ High High ~ Very high Medium ~ Very high

How can we effectively
use high expressiveness?

How can we avoid
very high cost?

Tools for software assurance

What do we need to know for formal verification?
• It is built on top of lots of unerlying theories
• But, verification engineers can only focus on the tiny subset
that is actually required for the verfication target

17

Simulation
Hoare logic

Formal semantics

Proof theory Game semantics

Categ
ory t

heory

Set theory

Can it actually remove bugs?

18

328

An Empirical Study on the Correctness of

Formally Verified Distributed Systems

Pedro Fonseca Kaiyuan Zhang Xi Wang Arvind Krishnamurthy

University of Washington

{pfonseca, kaiyuanz, xi, arvind}@cs.washington.edu

Abstract

Recent advances in formal verification techniques enabled
the implementation of distributed systems with machine-
checked proofs. While results are encouraging, the impor-
tance of distributed systems warrants a large scale evaluation
of the results and verification practices.

This paper thoroughly analyzes three state-of-the-art, for-
mally verified implementations of distributed systems: Iron-
Fleet, Verdi, and Chapar. Through code review and testing,
we found a total of 16 bugs, many of which produce serious
consequences, including crashing servers, returning incor-
rect results to clients, and invalidating verification guaran-
tees. These bugs were caused by violations of a wide-range
of assumptions on which the verified components relied. Our
results revealed that these assumptions referred to a small
fraction of the trusted computing base, mostly at the inter-
face of verified and unverified components. Based on our
observations, we have built a testing toolkit called PK, which
focuses on testing these parts and is able to automate the de-
tection of 13 (out of 16) bugs.

1. Introduction

Distributed systems, complex and difficult to implement cor-
rectly, are notably prone to bugs. This is partially because
developers find it challenging to reason about the combina-
tion of concurrency and failure scenarios. As a result, dis-
tributed systems bugs pose a serious problem for both ser-
vice providers and end users, and have critically caused ser-
vice interruptions and data losses [58]. The struggle to im-
prove their reliability spawned several important lines of re-
search, such as programming abstractions [5, 38, 46], bug-
finding tools [27, 39, 55, 56], and formal verification tech-
niques [23, 30, 36, 54].

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

EuroSys ’17 April 23-26, 2017, Belgrade, Serbia

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064183

Verified distributed
system code

OS

Verifier (core)

Developer

Specification

Aux. tools

Shim layer

Figure 1: An overview of the workflow to verify a distributed
system implementation.

Formal verification, in particular, offers an appealing ap-
proach because it provides a strong correctness guarantee
of the absence of bugs under certain assumptions. Over the
last few decades, the dramatic advances in formal verifica-
tion techniques have allowed these techniques to scale to
complex systems. They were successfully applied to build
large single-node implementations, such as the seL4 OS ker-
nel [28] and the CompCert compiler [35]. More recently,
they enabled the verification of complex implementations of
distributed protocols, including IronFleet [23], Verdi [54],
and Chapar [36], which are known to be non-trivial to im-
plement correctly.

At a high level, verifying these distributed system imple-
mentations follows the workflow shown in Figure 1. First,
developers describe the desired behavior of the system in a
high-level specification, which is often manually reviewed
and trusted to be correct. Developers also need to model
the primitives, such as system calls provided by the OS, on
which the implementation relies upon; we refer to this as the
shim layer. Finally, developers invoke auxiliary tools (e.g.,
scripts) to communicate with a verifier and print results. The
specification, the shim layer, and auxiliary tools, as well as
the components they glue together, are part of the trusted
computing base (TCB). If the verification check passes, it
guarantees the correctness of the implementation, assuming
the TCB is correct.

Can it actually remove bugs?

19

Formal verification can
guarantee the correctness of
target software module

Invariants provides correctness
property, but it might have
bugs that are not described in
invariants

Assumptions about unverified
components, so it may have
bugs

Specification of underlay

Our software

Specification of
our software

Applications of
our software

HW & underlying
software
(underlay)

Formal verification intro
with examples

20

Formal verification

8

The act of proving the correctness of software with respect
to a certain formal specification using mathematics

Definition

Proof
checker

Proof

Yes/No

Program

Specification

Refinement
relation

• Mathematical notations for
• Program specifications
• Invariants of the system
• Underlying system models

(e.g., HW, Compiler, etc)

• Subject of formal verificaiton

• Proofs for
• Program meet specifications
• Specficiations are consistent (i.e.,

all Invariants are well-defined)

Key components

9

• Consists of
• Core proof kernel (underlying

logic)
• Extended libraries for better

expressiveness

Verification tutorial:
simple stateless function

• Mathematical (functional)
specs:

Definition range_sum (start end : nat)
: nat :=

…
(end * (end – 1)
– start * (start – 1)) / 2

end.

Program example:

int range_sum (int start, int end) {
int sum = 0;

…
for (int i = start; i <= end; i++) {

sum += i;
}
return sum;

}

23

“given two positive numbers, find sum of all numbers between two”

Verification tutorial:
simple stateless function

24

…

Mathematical (functional) specifications

Low-level Implementation

All possible inputs (start, end) Generate same output (sum)

Verification tutorial: abstract state

25

Mathmatical (functional) list:
Variable A : Type.

Inductive list : Type :=
| nil : list
| cons : A -> list -> list.

Program example:

1) With array

int array_list[kMaxLength];

1) With linked list

struct Node {
int data;
Node* next;
Node* prev;

};

Software usually facilitates hardware states, memory and registers.

Mathematical state could be much simplier than those physical states.

Refinement relation (R): how mathematical list is related to the low-level structure.

Verification tutorial: abstract state

26

…

Mathematical (functional) specifications

Low-level Implementation

(abs’, ret)(abs, args)

𝑅 𝑅

((mem, reg), args) ((mem’, reg’), ret)

Decompose the entire software into multiple sub components,
verifying them, and combine their proofs together.

Verification tutorial: modularity

10

C code C code C code C code

Low-level
spec

Low-level
spec

Low-level
spec

High-level
spec

High-level
spec

Low-level
spec

High-level spec
High-level

spec

Specification of our software

...

...

...
Low-level

spec

New abstractions by
compose multiple
modules

Abstracted model by
hiding HW and C details

C friendly spec for
easy correctness proof

+
C correctness proof

TCB (HW &
underlying SW)
abstraction

Specification of underlay

Verification tutorial: modularity

28

…

Mathematical (functional) specifications

Low-level Implementation

((memh’, absh’, regh’), args)((memh, absh, regh), args)

𝑅 𝑅

((meml, absl, regl), args) ((meml’, absl’, regl’), args)

• Contextual refinement
• Compositional approach to compositional verification of concurrent objects.
• Combined with several program logics, it can show consistency between the object

implementation and its abstract specification.

Verification tutorial: modularity

10

C code C code C code C code

Low-level
spec

Low-level
spec

Low-level
spec

High-level
spec

High-level
spec

Low-level
spec

High-level spec
High-level

spec

Specification of our software

...

...

...
Low-level

spec

New abstractions by
compose multiple
modules

Abstracted model by
hiding HW and C details

C friendly spec for
easy correctness proof

+
C correctness proof

TCB (HW &
underlying SW)
abstraction

Specification of underlay

How can we effectively
use high expressiveness?

Verification tutorial: modularity

10

C code C code C code C code

Low-level
spec

Low-level
spec

Low-level
spec

High-level
spec

High-level
spec

Low-level
spec

High-level spec
High-level

spec

Specification of our software

...

...

...
Low-level

spec

New abstractions by
compose multiple
modules

Abstracted model by
hiding HW and C details

C friendly spec for
easy correctness proof

+
C correctness proof

TCB (HW &
underlying SW)
abstraction

Specification of underlay

How can we reduce the
very high cost?

How can we effectively
use high expressiveness?

Verification tutorial: modularity

10

C code C code C code C code

Low-level
spec

Low-level
spec

Low-level
spec

High-level
spec

High-level
spec

Low-level
spec

High-level spec
High-level

spec

Specification of our software

...

...

...
Low-level

spec

New abstractions by
compose multiple
modules

Abstracted model by
hiding HW and C details

C friendly spec for
easy correctness proof

+
C correctness proof

TCB (HW &
underlying SW)
abstraction

Specification of underlay

Formal verification projects

32

My formal verification researches

• CertiKOS – Small OS and hypervisor
• CertiKOS: An Extensible Architecture for Building Certified Concurrent OS

Kernels. OSDI 2016
• Safety and Liveness of MCS Lock - Layer by Layer. APLAS 2017
• Certified concurrent abstraction layers. PLDI 2018
• Building certified concurrent OS kernels. Comm. of ACM 62(10) 2019

• ADO (Atomic Distributed Object) – Distributed system
• WormSpace: A Modular Foundation for Simple, Verifiable Distributed Systems.

SoCC 2019
• Much ADO about failures: a fault-aware model for compositional verification

of strongly consistent distributed systems. Proc. ACM Program. Lang. 5(OOPSLA)
• Adore: Atomic Distributed Objects with Certified Reconfiguration, PLDI 2022

• pKVM formal verificaiton – Practical hypervisor

11

Distributed system verification

Distributed system

16

Local OS 1 Local OS 2 Local OS 3 Local OS 4

Distributed system layer (middleware)

App. B.App. A. App. C. App. D.

Computer 1 Computer 2 Computer 3 Computer 4

network

SMR
(High-level API)

Distributed
protocols

(Low-level API)

Distributed services
(e.g, KV store).

Distributed system
software stack

Distributed system software stack

17

Network-based models too complex

36

S
1
{
“abc”:”def”
“foo”:”bar”
}

S
3

{
“abc”:”def”
}

S
2
{
“abc”:”def”
“foo”:”bar”
}

prepare

ack

committime = 2
leader = true

time = 1
leader = false

time = 2
leader = false

Network-based models too complex

37

{
“abc”:”def”
“foo”:”bar”
}

{
“abc”:”def”
}

{
“abc”:”def”
“foo”:”bar”
}

prepare

ack

commitS
1

S
3

S
2

time = 2
leader = true

time = 1
leader = false

time = 2
leader = false

Challenges

Network errors

Network-based models too complex

38

{
“abc”:”def”
“foo”:”bar”
}

{
“abc”:”def”
}

{
“abc”:”def”
“foo”:”bar”
}

prepare

ack

commitS
1

S
3

S
2

time = 2
leader = true

time = 1
leader = false

time = 2
leader = false

Challenges

Network errors

Protocol subtleties

Network-based models too complex

39

{
“abc”:”def”
“foo”:”bar”
}

time = 2
leader = true

{
“abc”:”def”
}

time = 1
leader = false

{
“abc”:”def”
“foo”:”bar”
}

time = 2
leader = false

prepare

ack

commitS
1

S
3

S
2

Challenges

Network errors

Protocol subtleties

Application
(distributed service)

bugs

Network-based models too complex

17

Distributed
protocols

(Low-level API)

• Non-determinism
• Complex interleaving
• Network & node errors

• Several protocols and implementations
(paxos, raft, chain-replication, etc)

• Lots of verificaiton works done

SMR
(High-level API)

Distributed services
(e.g, KV store).

Distributed system
software stack

State machine replication too abstract

41

”foo”:”bar”

RPC

SMR

“abc”:“def” “foo”: “bar”

Internal (hidden)

SMR
(High-level API)

Distributed
protocols

(Low-level API)

Distributed services
(e.g, KV store).

Distributed system
software stack

• Deterministic

• Unified abstraction

• Non-determinism
• Complex interleaving
• Network & node errors

• Several protocols and implementations
(paxos, raft, chain-replication, etc)

• Lots of verificaiton works done

State machine replication too abstract

17

Partial failure

43

{
“abc”:”def”
}

S1

{
“abc”:”def”
}

S2

{
“abc”:”def”
}

S3

Partial failure

44

{
“abc”:”def”
“foo”:”bar”
}

S1

{
“abc”:”def”
}

S2

{
“abc”:”def”
}

S3

”foo”:”bar”

Alice

Partial failure

45

{
“abc”:”def”
“foo”:”bar”
}

S1

{
“abc”:”def”
}

S2

{
“abc”:”def”
}

S3

Read

Bob

Partial failure

46

{
“abc”:”def”
“foo”:”bar”
}

S1

{
“abc”:”def”
“foo”:”bar”
}

S2

{
“abc”:”def”
“foo”:”bar”
}

S3

”foo”:”bar”

Bob

Partial failure is important

• Unavoidable feature unique to distributed systems
• Influence with all aspects of distributed protocols (e.g., leader
election and reconfiguration)
• Can be used for performance optimizations

• TAPIR (SOSP ’15): Transactions with out-of-order commits
• Speculator (SOSP ’05): Speculative distributed file system

47

Partial failure is a central reality of distributed computing. [. . .] Being robust in
the face of partial failure requires some expression at the interface level.
(Jim Waldo. A Note on Distributed Computing. 1994)

Partial failure is important

17

SMR
(High-level API)

Distributed
protocols

(Low-level API)

Distributed services
(e.g, KV store).

Distributed system
software stack

• Deterministic

• Unified abstraction

?
• Non-determinism
• Complex interleaving
• Network & node errors

• Several protocols and implementations
(paxos, raft, chain-replication, etc)

• Lots of verificaiton works done

ADO (Atomic distributed object)

17

SMR
(High-level API)

Distributed
protocols

(Low-level API)

Distributed services
(e.g, KV store).

Distributed system
software stack

• Deterministic

• Unified abstraction
§ Simple, but non-deterministic

abstraction

§ Covers all protocols

§ Make connection between two
APIs possible

• Non-determinism
• Complex interleaving
• Network & node errors

• Several protocols and implementations
(paxos, raft, chain-replication, etc)

• Lots of verificaiton works done

ADO
(Atomic distributed

object)

ADO state

50

“abc”:“def”
1

“foo”:“bar”
2

Method
Timestamp

ADO Legend

Persistent Log
Entry

ADO state

51

“abc”:“def”
1

“foo”:“bar”
2

Method
Timestamp

ADO Legend

Persistent Log
Entry

Cache Tree
Entry

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Method
Timestamp

ADO operations

52

“abc”:“def”
1

“foo”:“bar”
2

Pull Invoke Push

Prepare
Local

Update Commit

Refine

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

ADO operations

53

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

4

4

3

S1

S3

S2
👑

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“dot”:“cot”
3

“cat”:“dog”
3

ADO operations

54

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

S1

S2

S3

5

4

3

“xyz”:“123”
4

“dot”:“cot”
3

S1

S3

S2
👑“cat”:“dog”

3

ADO operations

55

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

5

5

5

S1

S3

S2

Prepare
“abc”:“def”

1
“foo”: “bar”

2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“dot”:“cot”
3

“cat”:“dog”
3

ADO operations

56

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

5

5

5

S1

S3

S2

Ack

Ack

“xyz”:“123”
4

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“dot”:“cot”
3

“cat”:“dog”
3

ADO operations

57

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

Pull

“xyz”:“123”
4

👑

Pull

Get permission to update and select a starting point in the cache tree.

5

5

5

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“dot”:“cot”
3

“xyz”:“123”
4

“cat”:“dog”
3

“bee”:“gee”
5

ADO Operations

58

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

“bee”:”gee”

“xyz”:“123”
4

👑
5

5

5

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“dot”:“cot”
3

“cat”:“dog”
3

ADO operations

59

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

“bad”:”cot”

“xyz”:“123”
4

👑“bee”:“gee”
5

“bad”:“cot”
55

5

5

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“dot”:“cot”
3

“cat”:“dog”
3

ADO operations

60

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

“bee”:”gee”

👑

“bee”:“gee”
5

Invoking a Method

Add a new entry to the cache tree.

5

5

5

“xyz”:“123”
4

“bad”:“cot”
5

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“dot”:“cot”
3

“cat”:“dog”
3

“bee”:“gee”
5

ADO operations

61

“abc”:“def”
1

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

👑

“bad”:“cot”
5

“bad”:” cot”

Invoking a Method

Add a new entry to the cache tree.

5

5

5

“xyz”:“123”
4

“bad”:“cot”
5

“abc”:“def”
1

“foo”: “bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:“123”
4

“cat”:“dog”
3

“dot”:“cot”
3

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

“bee”:“gee”
5

“bee”:“gee”
5

ADO operations

62

Multi-Paxos

ADO

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

S1

S2

S3

“xyz”:”123”
4

S1

S3

S2

“xyz”:“123”
4

👑“bad”:“cot”
5

“bee”:“gee”
5

“xyz”:“123”
4

“bee”:“gee”
5

Commit

5

5

5

“abc”:“def”
1

“bad”:“cot”
5

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

“bee”:“gee”
5

“bee”:“gee”
5

ADO operations

63

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

👑
Commit

5

5

5

“abc”:“def”
1

“bad”:“cot”
5

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

“xyz”:“123”
4

“bee”:“gee”
5

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:”123”
4

“xyz”:“123”
4

“bad”:“cot”
5

“bee”:“gee”
5

“xyz”:“123”
4

“bee”:“gee”
5

“bee”:“gee”
5

ADO operations

64

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

👑

“bad”:“cot”
5

“xyz”:“123”
4

“bee”:“gee”
5

Push

Push

Move committed methods into the log and prune stale states from the tree.

5

5

5

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:”123”
4

“xyz”:“123”
4

“bad”:“cot”
5

“bee”:“gee”
5

“xyz”:“123”
4

“bee”:“gee”
5

“bee”:“gee”
5

ADO operations

65

“abc”:“def”
1

“foo”:“bar”
2

“cat”:“dog”
3

“dot”:“cot”
3

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

👑

“bad”:“cot”
5

“xyz”:“123”
4

“bee”:“gee”
5

Push

Move committed methods into the log and prune stale states from the tree.

5

5

5

Push

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:”123”
4

“xyz”:“123”
4

“bad”:“cot”
5

“bee”:“gee”
5

“xyz”:“123”
4

“bee”:“gee”
5

“bee”:“gee”
5

ADO operations

66

“abc”:“def”
1

“foo”:“bar”
2

Multi-Paxos

ADO

S1

S2

S3

S1

S3

S2

👑

“bad”:“cot”
5

“xyz”:“123”
4

“bee”:“gee”
5

Push

Move committed methods into the log and prune stale states from the tree.

5

5

5

Push

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“abc”:“def”
1

“foo”:“bar”
2

“xyz”:”123”
4

“xyz”:“123”
4

“bee”:“gee”
5

“bad”:“cot”
5

“bee”:“gee”
5

“xyz”:“123”
4

“bee”:“gee”
5

Connection with distributed protocols

67

Paxos

ADO

Refine

ADO Model

Raft
Primary
Backup …

Connection with distributed protocols

68

Pull Invoke Push

Prepare Local
Update

Commit

Refine

Send
(prepare)

Recv
(prepare)

…
(prepare)

Send
(commit)

Recv
(commit)

…
(commit)

Local
Update

Send
(prepare)

…
(prepare)

Send
(commit)

…
(commit)

Recv
(commit)

Local
Update

Recv
(prepare)

Group

Commute

Distributed applications

69

ADO/SMR Refine

ADO ADO ADO ADO

DApp DApp

DApp

ADO

SMR

ADO

Conclusion

70

Conclusion

• Formal verification can reduce the cost for the poor software
• Operational software failure cost
• Cost due to poor legacy systems

• Formal verification
• What is formal verification
• Formal verification key concept
• Modularity in formal verification

• ADO: formal verification project example
• Distributed system formal verification
• Unified and modular program abstractions for distributed systems

71

